FUNCTIONS OF MODULO N

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 10 September 2025.

The mod n relation is an equivalence relation. The set \mathbb{Z}_n is defined as the set of equivalence classes for the integer n:

$$\mathbb{Z}_n = \{ [0]_n, [1]_n, \dots, [n-1]_n \}$$
 (1)

We can define mappings from one such set to another, as in $\mathbb{Z}_n \to \mathbb{Z}_m$, but if we want these mappings to qualify as functions, we must ensure that the conditions for a function are satisfied. These conditions are

- (1) The relation must exist for every element $a \in \mathbb{Z}_n$. This is the completeness condition.
- (2) If two elements $a, b \in \mathbb{Z}_n$ are equal, then f(a) = f(b). That is, the equal elements in \mathbb{Z}_n cannot map to more than one element in \mathbb{Z}_m . This is the uniqueness condition.

Example 1. Define the mapping f by

$$f: \mathbb{Z}_5 \to \mathbb{Z}_{10}, \text{ where } f([a]_5) = [6a]_{10}$$
 (2)

From the definition of the modulus, members a and b of the class $[a]_5$ must satisfy $5 \mid (b-a)$. That is

$$b - a = 5q \tag{3}$$

for $q \in \mathbb{Z}$. Also, members of $[6a]_{10}$ must satisfy

$$6b - 6a = 10s \tag{4}$$

for $s \in \mathbb{Z}$. Multiplying 3 through by 6 we get

$$6b - 6a = 30q$$
 (5)

Since 10|30q, this is a well-defined function.

We can generalize this example to deal with the case $f([a]_n) = [ka]_m$ where $n, m, k \in \mathbb{N}$. That is, we map $\mathbb{Z}_n \to \mathbb{Z}_m$ where the class in \mathbb{Z}_m is a multiple of the class in \mathbb{Z}_n .

Theorem 1. With these conditions, f is a well-defined map (that is, a function) if and only if m|kn.

1

Proof. An 'if and only if' proof requires that we argue in both directions. First, assume that f is a function. Then, since $[0]_n = [n]_n$, both these classes map to the same class in \mathbb{Z}_m . That is, $f([0]_n) = [k \times 0]_m = [0]_m$ and $f([n]_n) = [kn]_m$. In order for $[0]_m$ to equal $[kn]_m$, we must have m|kn.

Conversely, suppose that m|kn. Then there exists $\ell \in \mathbb{Z}$ such that $kn = m\ell$. We now wish to show that for two elements $[a]_n$ and $[b]_n$ with $[a]_n = [b]_n$, that $f([a]_n) = f([b]_n)$. That is, we start with $[a]_n = [b]_n$ which implies that n|(b-a). Then

$$n|(b-a) \Rightarrow b-a = nq \text{ for } q \in \mathbb{Z}$$
 (6)

$$\Rightarrow kb - ka = knq \tag{7}$$

$$\Rightarrow kb - ka = m\ell q = m(\ell q) \tag{8}$$

$$\Rightarrow m | (kb - ka) \tag{9}$$

$$\Rightarrow [ka]_m = [kb]_m \tag{10}$$

$$\Rightarrow f([a]_n) = f([b]_n) \tag{11}$$

In particular, we can use the mapping of the element $[0]_n$ to prove that the map is not a function if $m \not\mid kn$.

Example 2. Define

$$f: \mathbb{Z}_7 \to \mathbb{Z}_{12} \text{ where } f([a]_7) = [a]_{12}$$
 (12)

In this case, n = 7, m = 12 and k = 1, and $m \nmid kn$ since 12 does not divide 7. Thus this is not a function. Looking at the class $[0]_7$, we have $[0]_7 = [7]_7$ but $f([0]_7) = [0]_{12}$ and $f([7]_7) = [7]_{12} \neq [0]_{12}$.

Example 3. Define

$$f: \mathbb{Z}_4 \to \mathbb{Z}_6 \text{ where } f([a]_4) = [3a]_6$$
 (13)

Here, n=4, m=6 and k=3, and $6|(3\times4)$, so this is a well-defined function.

Example 4. Define

$$f: \mathbb{Z}_8 \to \mathbb{Z}_4 \text{ where } f([a]_8) = [ka]_4$$
 (14)

where $k \in \mathbb{Z}$. In this case n = 8 and m = 4. Since 4|8k for any k, this is a function.

Example 5. Define

$$f: \mathbb{Z}_4 \to \mathbb{Z}_8 \text{ where } f([a]_4) = [ka]_8$$
 (15)

Here, n=4 and m=8. In order for this to be a function, we must have 8|4k, which is true if k is an even integer.

Example 6. Suppose that $m, n \in \mathbb{Z}$ such that m > n, and define

$$f: \mathbb{Z}_n \to \mathbb{Z}_m \text{ where } f([a]_n) = [a]_m$$
 (16)

Since m > n and k = 1, m can never divide kn, so this is not a function for any such values of m and n.